40 research outputs found

    Probability Weighted Compact Feature for Domain Adaptive Retrieval

    Full text link
    Domain adaptive image retrieval includes single-domain retrieval and cross-domain retrieval. Most of the existing image retrieval methods only focus on single-domain retrieval, which assumes that the distributions of retrieval databases and queries are similar. However, in practical application, the discrepancies between retrieval databases often taken in ideal illumination/pose/background/camera conditions and queries usually obtained in uncontrolled conditions are very large. In this paper, considering the practical application, we focus on challenging cross-domain retrieval. To address the problem, we propose an effective method named Probability Weighted Compact Feature Learning (PWCF), which provides inter-domain correlation guidance to promote cross-domain retrieval accuracy and learns a series of compact binary codes to improve the retrieval speed. First, we derive our loss function through the Maximum A Posteriori Estimation (MAP): Bayesian Perspective (BP) induced focal-triplet loss, BP induced quantization loss and BP induced classification loss. Second, we propose a common manifold structure between domains to explore the potential correlation across domains. Considering the original feature representation is biased due to the inter-domain discrepancy, the manifold structure is difficult to be constructed. Therefore, we propose a new feature named Histogram Feature of Neighbors (HFON) from the sample statistics perspective. Extensive experiments on various benchmark databases validate that our method outperforms many state-of-the-art image retrieval methods for domain adaptive image retrieval. The source code is available at https://github.com/fuxianghuang1/PWCFComment: Accepted by CVPR 2020; The source code is available at https://github.com/fuxianghuang1/PWC

    BiGSeT: Binary Mask-Guided Separation Training for DNN-based Hyperspectral Anomaly Detection

    Full text link
    Hyperspectral anomaly detection (HAD) aims to recognize a minority of anomalies that are spectrally different from their surrounding background without prior knowledge. Deep neural networks (DNNs), including autoencoders (AEs), convolutional neural networks (CNNs) and vision transformers (ViTs), have shown remarkable performance in this field due to their powerful ability to model the complicated background. However, for reconstruction tasks, DNNs tend to incorporate both background and anomalies into the estimated background, which is referred to as the identical mapping problem (IMP) and leads to significantly decreased performance. To address this limitation, we propose a model-independent binary mask-guided separation training strategy for DNNs, named BiGSeT. Our method introduces a separation training loss based on a latent binary mask to separately constrain the background and anomalies in the estimated image. The background is preserved, while the potential anomalies are suppressed by using an efficient second-order Laplacian of Gaussian (LoG) operator, generating a pure background estimate. In order to maintain separability during training, we periodically update the mask using a robust proportion threshold estimated before the training. In our experiments, We adopt a vanilla AE as the network to validate our training strategy on several real-world datasets. Our results show superior performance compared to some state-of-the-art methods. Specifically, we achieved a 90.67% AUC score on the HyMap Cooke City dataset. Additionally, we applied our training strategy to other deep network structures, achieving improved detection performance compared to their original versions, demonstrating its effective transferability. The code of our method will be available at https://github.com/enter-i-username/BiGSeT.Comment: 13 pages, 13 figures, submitted to IEEE TRANSACTIONS ON IMAGE PROCESSIN

    Two-Phase Object-Based Deep Learning for Multi-Temporal SAR Image Change Detection

    Get PDF
    Change detection is one of the fundamental applications of synthetic aperture radar (SAR) images. However, speckle noise presented in SAR images has a negative effect on change detection, leading to frequent false alarms in the mapping products. In this research, a novel two-phase object-based deep learning approach is proposed for multi-temporal SAR image change detection. Compared with traditional methods, the proposed approach brings two main innovations. One is to classify all pixels into three categories rather than two categories: unchanged pixels, changed pixels caused by strong speckle (false changes), and changed pixels formed by real terrain variation (real changes). The other is to group neighbouring pixels into superpixel objects such as to exploit local spatial context. Two phases are designed in the methodology: (1) Generate objects based on the simple linear iterative clustering (SLIC) algorithm, and discriminate these objects into changed and unchanged classes using fuzzy c-means (FCM) clustering and a deep PCANet. The prediction of this Phase is the set of changed and unchanged superpixels. (2) Deep learning on the pixel sets over the changed superpixels only, obtained in the first phase, to discriminate real changes from false changes. SLIC is employed again to achieve new superpixels in the second phase. Low rank and sparse decomposition are applied to these new superpixels to suppress speckle noise significantly. A further clustering step is applied to these new superpixels via FCM. A new PCANet is then trained to classify two kinds of changed superpixels to achieve the final change maps. Numerical experiments demonstrate that, compared with benchmark methods, the proposed approach can distinguish real changes from false changes effectively with significantly reduced false alarm rates, and achieve up to 99.71% change detection accuracy using multi-temporal SAR imagery

    IE-Net: Information-Enhanced Binary Neural Networks for Accurate Classification

    No full text
    Binary neural networks (BNNs) have been proposed to reduce the heavy memory and computation burdens in deep neural networks. However, the binarized weights and activations in BNNs cause huge information loss, which leads to a severe accuracy decrease, and hinders the real-world applications of BNNs. To solve this problem, in this paper, we propose the information-enhanced network (IE-Net) to improve the performance of BNNs. Firstly, we design an information-enhanced binary convolution (IE-BC), which enriches the information of binary activations and boosts the representational power of the binary convolution. Secondly, we propose an information-enhanced estimator (IEE) to gradually approximate the sign function, which not only reduces the information loss caused by quantization error, but also retains the information of binary weights. Furthermore, by reducing the information loss in binary representations, the novel binary convolution and estimator gain large information compared with the previous work. The experimental results show that the IE-Net achieves accuracies of 88.5% (ResNet-20) and 61.4% (ResNet-18) on CIFAR-10 and ImageNet datasets respectively, which outperforms other SOTA methods. In conclusion, the performance of BNNs could be improved significantly with information enhancement on both weights and activations
    corecore